์ผ | ์ | ํ | ์ | ๋ชฉ | ๊ธ | ํ |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 | 31 |
- ๋ชจ๋์๋ฅ๋ฌ๋
- Python
- few shot dst
- ํ๋ก๊ทธ๋๋จธ์ค
- ๋ฐฑ์ค
- nlp๋ ผ๋ฌธ๋ฆฌ๋ทฐ
- ๊ฒ์์์ง
- MySQL
- classification text
- From Machine Reading Comprehension to Dialogue State Tracking: Bridging the Gap
- ๋ฅ๋ฌ๋๊ธฐ์ด
- ๋ค์ด๋๋ฏน ํ๋ก๊ทธ๋๋ฐ
- til
- ์ ๋ณด์ฒ๋ฆฌ๊ธฐ์ฌ ์ฑ ์ถ์ฒ
- ์ ๋ณด์ฒ๋ฆฌ๊ธฐ์ฌ์ ๊ณต์ํฉ๊ฒฉํ๊ธฐ
- ์ ๋ณด์ฒ๋ฆฌ๊ธฐ์ฌ์ ๊ณต์
- Leveraging Slot Descriptions for Zero-Shot Cross-Domain Dialogue State Tracking
- fasttext text classification ํ๊ธ
- dialogue state tracking
- DST fewshot learning
- ๋ฐ์ดํฐ ํฉ์ฑ
- Few Shot Dialogue State Tracking using Meta-learning
- ์ ๋ณด์ฒ๋ฆฌ๊ธฐ์ฌ ์์ ๋น
- How Much Knowledge Can You Pack Into the Parameters of a Language Model?
- DST zeroshot learning
- Zero-shot transfer learning with synthesized data for multi-domain dialogue state tracking
- SUMBT:Slot-Utterance Matching for Universal and Scalable Belief Tracking
- ํ์ด์ฌ์ ํ์ด์ฌ๋ต๊ฒ
- 2020์ ๋ณด์ฒ๋ฆฌ๊ธฐ์ฌํ๊ธฐ
- ์์ฐ์ด์ฒ๋ฆฌ ๋ ผ๋ฌธ ๋ฆฌ๋ทฐ
- Today
- Total
๐ฒ์๋ผ๋๋์ฒญ๋
FastText Classification ์ ์ฉํด๋ณด๊ธฐ ๋ณธ๋ฌธ
Fast text ๋ Facebook's AI Research (FAIR) lab ์์ ๋ง๋ wordembdding๊ณผ,text classification์ ์ํ library ์ด๋ค. 294๊ฐ ์ธ์ด์ ๋ํด์ pretrained model์ ์ ๊ณตํ๋ค. ํ๊ตญ์ด๋ ํฌํจ๋๋ค(๋ง์ธ!)
์ด๋ฒ์ MZ text classification ๋ํ์ ๋๊ฐ๊ฒ ๋๋ฉด์, fast text classification์ ์ฌ์ฉํด ๋ณด์๊ณ , ์ฌ์ฉ๋ฒ๊ณผ ํ๊ธฐ๋ฅผ ๋จ๊ฒจ๋ณด๋ ค๊ณ ํ๋ค.
๊ธฐ์กด์ word to vector์์ ์ฐจ์ด์
๊ธฐ์กด์ word to vector๋ ๋จ์ด ๊ธฐ๋ฐ์ผ๋ก ํ์ต์ ์งํํ๋ค.
๊ทธ๋ ๊ธฐ ๋๋ฌธ์ ์ฌ์ ์ ์๋ ๋จ์ด์ ๋ํด์๋ ์ ๋๋ก ๋จ์ด ๋ฒกํฐ๋ฅผ ๊ฐ์ ธ์ฌ ์ ์์๋ค. ํ์ง๋ง fasttext๋ ๋จ์ด ๋ด๋ถ์์๋ ngram์ผ๋ก ์ชผ๊ฐ์ ํ์ตํ๊ธฐ ๋๋ฌธ์, ์ด๋์ ๋ ์คํ๋ ์ ์กฐ์ด์ ๋ํด์๋ ํ์ต์ด ๊ฐ๋ฅํ๋ค.
๊ทธ๋ฆฌ๊ณ ์๋๋ฉด์์๋ ์ฐจ์ด๊ฐ ์๋ค.
Fasttext๋ ์๋๊ฐ ๋น ๋ฅด๋ค! classification ๋ชจ๋ธ์ ํ์ตํ๊ธฐ ์ํด 60000๊ฐ์ ๋ฌธ์ฅ์ ํ์ตํ๋๋ฐ 5๋ถ์ด ์ฑ ๊ฑธ๋ฆฌ์ง ์์๋ค.
๊ทธ๋ฌ๋ ๋ชจ๋ธ์ ํฌ๊ธฐ๊ฐ word to vector ๋ณด๋ค ์ปค์, model load์ ์ค๋ ์๊ฐ์ด ๊ฑธ๋ ธ๋ค. ํนํ fasttext ์์ ์ ๊ณตํ๋ ํ๊ธ pretrainned๋ชจ๋ธ ์ ์ฉํ๋ ค๋ฉด ์๊ฐ์ด ํ์ฐธ ๊ฑธ๋ฆฐ๋ค ใ ใ
Fasttext ํ์ต๊ณผ ํ ์คํธ
data:
๋จผ์ ๋ฐ์ดํฐ ํ์์ ํ์ต์ด ๊ฐ๋ฅํ๊ฒ ๋ฐ๊ฟ ์ค์ผํ๋ค
1
2
3
4
5
6
7
|
__label__1.์ฐจ๋์ ์ด __label__์ด์ ์ ์ด __label__์ผ์๋ฐ๋ผ๊ฐ๊ธฐ ๋ด ์ ์ ์ ๋ ์ฐจ ๊ณ์ ๋ฐ๋ผ๊ฐ .
__label__1.์ฐจ๋์ ์ด __label__์ด์ ์ ์ด __label__์ผ์๋ฐ๋ผ๊ฐ๊ธฐ ์ฐจ ๋ฐ๋ผ๋ถ ๊ธฐ ๊ฐ๋ฅ ํ ๋ ?
__label__1.์ฐจ๋์ ์ด __label__์ด์ ์ ์ด __label__์ผ์๋ฐ๋ผ๊ฐ๊ธฐ ์์ฐจ ์ ์ ๋๊ฑฐ๋ฆฌ ๋ฅผ ์ ์ง ํ ๋ฉด์ ๋ฐ๋ผ๊ฐ ์ค .
__label__1.์ฐจ๋์ ์ด __label__์ด์ ์ ์ด __label__์ผ์๋ฐ๋ผ๊ฐ๊ธฐ ์์ฐจ ๋ฐ๋ผ ์ ๋ถ ์ด ?
__label__1.์ฐจ๋์ ์ด __label__์ด์ ์ ์ด __label__์ผ์๋ฐ๋ผ๊ฐ๊ธฐ ์ ์ ์ฐจ ๋ค ์ ๋ถ ์ด ์ค๋ ?
__label__1.์ฐจ๋์ ์ด __label__์ด์ ์ ์ด __label__์ผ์๋ฐ๋ผ๊ฐ๊ธฐ ๋ ์ ์์ฐจ ๋ฅผ ๋ฐ๋ผ ๊ฐ ์ฃผ ๋ ด .
__label__1.์ฐจ๋์ ์ด __label__์ด์ ์ ์ด __label__์ผ์๋ฐ๋ผ๊ฐ๊ธฐ ์ ๋ฐ๋ผ๊ฐ ๊ฐ ๊ธฐ ๋ ํ ์ ์ ์ง ?
|
cs |
txtํ์ผ์์ ๋ฌธ์ฅ์ ์ฒซ๋ถ๋ถ์๋ __label__['class ์ด๋ฆ'] ์, ๋ค์๋ ํํ์ ๋ถ๋ฆฌ๊ฐ ์๋ฃ๋ ๋ฌธ์ฅ์ '\t'๊ธฐํธ๋ก ๋ถ๋ฆฌํ์ฌ dataํ์์ ๋ฐ๊ฟ์ค๋ค. ํ ๋ฌธ์ฅ์ ์ฌ๋ฌ class๊ฐ ๊ฐ๋ฅํ๋ค.
๋ชจ๋ธ์ ํ์ต๋ ๊ฐ๋จํ๋ค.
1
2
3
4
5
6
7
8
9
10
|
import fasttext
model1 = fasttext.train_supervised(input="[ํ์ตํ์ผ๊ฒฝ๋ก]",
epoch=100,
bucket = 20000,
lr = 1,
wordNgrams=2,
dim=80,
)
print(model1.test("[ํ ์คํธํ์ผ๊ฒฝ๋ก]") model1.save_model(".[๋ชจ๋ธ์ ์ฅ๊ฒฝ๋ก].bin")
|
cs |
ํ์ต์ํฌ ํ์ผ์ ๊ฒฝ๋ก๋ฅผ ์ ๋ ฅํ๋ฉด, ์์์ ํ์ต์ ํ๋ค. ๊ทธ ํ์ผ์ ์ ์ฅ๋ง ์ ํ๋ฉด ๋๋ค.
์ฑ๋ฅ์ model.test๋ฅผ ํตํด ํ ์ ์๋ค. ์ ํ๋๋ฅผ ์ถ๋ ฅํด์ค๋ค.
์๋๋ ๋ฌธ์ฅ์ ๋ํด predict๋ฅผ ํ ์์์ด๋ค.
model1.predict("์ ์ฐจ๋ฅผ ๋ฐ๋ผ ๊ฐ ์ค")
>>> (('__label__1.์ฐจ๋์ ์ด',), array([1.00001001]))
model1.predict("์๊ธ์ค ๋ก ๊ฐ๋ ๊ธธ ์ ์๋ ค ์ค")
>>> (('__label__5.์๋ฃ',), array([1.00001001]))
ํ์ต์๋๊ฐ ๋น ๋ฅด๊ณ , ์ฑ๋ฅ๋ ์ด๋์ ๋ ๊ด์ฐฎ์์ ๊ด์ฐฎ์ ๊ฒ ๊ฐ๋ค!