์ผ | ์ | ํ | ์ | ๋ชฉ | ๊ธ | ํ |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
Tags
- few shot dst
- ์ ๋ณด์ฒ๋ฆฌ๊ธฐ์ฌ ์์ ๋น
- ๋ชจ๋์๋ฅ๋ฌ๋
- ๋ค์ด๋๋ฏน ํ๋ก๊ทธ๋๋ฐ
- til
- ์ ๋ณด์ฒ๋ฆฌ๊ธฐ์ฌ์ ๊ณต์
- 2020์ ๋ณด์ฒ๋ฆฌ๊ธฐ์ฌํ๊ธฐ
- ๋ฐ์ดํฐ ํฉ์ฑ
- ๋ฅ๋ฌ๋๊ธฐ์ด
- nlp๋ ผ๋ฌธ๋ฆฌ๋ทฐ
- Zero-shot transfer learning with synthesized data for multi-domain dialogue state tracking
- DST zeroshot learning
- Few Shot Dialogue State Tracking using Meta-learning
- How Much Knowledge Can You Pack Into the Parameters of a Language Model?
- ์ ๋ณด์ฒ๋ฆฌ๊ธฐ์ฌ์ ๊ณต์ํฉ๊ฒฉํ๊ธฐ
- fasttext text classification ํ๊ธ
- ํ์ด์ฌ์ ํ์ด์ฌ๋ต๊ฒ
- ํ๋ก๊ทธ๋๋จธ์ค
- dialogue state tracking
- ๋ฐฑ์ค
- classification text
- SUMBT:Slot-Utterance Matching for Universal and Scalable Belief Tracking
- ์์ฐ์ด์ฒ๋ฆฌ ๋ ผ๋ฌธ ๋ฆฌ๋ทฐ
- DST fewshot learning
- ๊ฒ์์์ง
- ์ ๋ณด์ฒ๋ฆฌ๊ธฐ์ฌ ์ฑ ์ถ์ฒ
- MySQL
- From Machine Reading Comprehension to Dialogue State Tracking: Bridging the Gap
- Python
- Leveraging Slot Descriptions for Zero-Shot Cross-Domain Dialogue State Tracking
Archives
- Today
- Total
๋ชฉ๋ก๋ฐฑ์ค ๋์ 2 ํ์ด์ฌ (1)
๐ฒ์๋ผ๋๋์ฒญ๋

๋์ 2 ๋ฌธ์ ๋ฅผ ๋ค์ด๋๋ฏน ํ๋ก๊ทธ๋๋ฐ์ผ๋ก ํ์ด ๋ณด์๋ค. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 import sys def main(): K, N = map(int, sys.stdin.readline().split()) coins = [] for _ in range(K): coins.append(int(sys.stdin.readline())) d = [-1 for _ in range(N+1)] d[0] = 0 for i in coins: if(id[j-i]+1): d[j] = d[j-i]+1 print(d[N]) if __name__ =="__main__": main() Colored by Color Scripter..
์๊ณ ๋ฆฌ์ฆ ๋ฌธ์ ํ์ด
2019. 12. 5. 17:02