์ผ | ์ | ํ | ์ | ๋ชฉ | ๊ธ | ํ |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
Tags
- 2020์ ๋ณด์ฒ๋ฆฌ๊ธฐ์ฌํ๊ธฐ
- classification text
- ์ ๋ณด์ฒ๋ฆฌ๊ธฐ์ฌ ์ฑ ์ถ์ฒ
- ๋ชจ๋์๋ฅ๋ฌ๋
- Python
- ๋ค์ด๋๋ฏน ํ๋ก๊ทธ๋๋ฐ
- dialogue state tracking
- ์ ๋ณด์ฒ๋ฆฌ๊ธฐ์ฌ์ ๊ณต์ํฉ๊ฒฉํ๊ธฐ
- ์ ๋ณด์ฒ๋ฆฌ๊ธฐ์ฌ ์์ ๋น
- fasttext text classification ํ๊ธ
- ์์ฐ์ด์ฒ๋ฆฌ ๋ ผ๋ฌธ ๋ฆฌ๋ทฐ
- ํ๋ก๊ทธ๋๋จธ์ค
- ๊ฒ์์์ง
- few shot dst
- til
- ๋ฐ์ดํฐ ํฉ์ฑ
- Few Shot Dialogue State Tracking using Meta-learning
- DST fewshot learning
- ํ์ด์ฌ์ ํ์ด์ฌ๋ต๊ฒ
- SUMBT:Slot-Utterance Matching for Universal and Scalable Belief Tracking
- nlp๋ ผ๋ฌธ๋ฆฌ๋ทฐ
- MySQL
- Leveraging Slot Descriptions for Zero-Shot Cross-Domain Dialogue State Tracking
- How Much Knowledge Can You Pack Into the Parameters of a Language Model?
- DST zeroshot learning
- ๋ฅ๋ฌ๋๊ธฐ์ด
- Zero-shot transfer learning with synthesized data for multi-domain dialogue state tracking
- From Machine Reading Comprehension to Dialogue State Tracking: Bridging the Gap
- ๋ฐฑ์ค
- ์ ๋ณด์ฒ๋ฆฌ๊ธฐ์ฌ์ ๊ณต์
Archives
- Today
- Total
๋ชฉ๋ก๋ค์ด๋๋ฏนํ๋ก๊ทธ๋๋ฐ (1)
๐ฒ์๋ผ๋๋์ฒญ๋
[๋ฐฑ์ค] 9095๋ฒ, 1,2,3 ๋ํ๊ธฐ(๋ค์ด๋๋ฏน ํ๋ก๊ทธ๋๋ฐ)
์ค๋๋ง์ ํ๋ก๊ทธ๋๋ฐ ๋ฌธ์ ๋ฅผ ํ์ด๋ณด์๋ค. ๋์ ํ์ด 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 #123 ๋ํ๊ธฐ N = int(input()) d = {} d[0] = 0 d[1] = 1 d[2] = 2 d[3] = 4 d[4] = 7 for n in range(N): target = int(input()) for i in range(1+target): if(i not in d.keys()): d[i] = d[i-1] + d[i-2] + d[i-3] print(d[target]) cs ์๋ก์ด ์ง์ dict์์ key๊ฐ ์๋์ง ํ์ธํ ๋, i in dict.keys()
์๊ณ ๋ฆฌ์ฆ ๋ฌธ์ ํ์ด
2020. 5. 19. 03:17